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Methods for hyperbolic systems with stiff relaxation

R. B. Lowrie∗ and J. E. Morel

Los Alamos National Laboratory, Computer & Computational Sciences Division
Los Alamos, New Mexico 87545, U.S.A.

SUMMARY

Three methods are analyzed for solving a linear hyperbolic system that contains stiff relaxation. We
show that the semi-discrete discontinuous Galerkin method, with a linear basis, is accurate when the
relaxation time is unresolved (asymptotic preserving — AP). The two other methods are shown to
be non-AP. To discriminate between AP and non-AP methods, we argue that in the limit of small
relaxation time, one should fix the dimensionless parameters that characterize the near-equilibrium
limit. Copyright c© 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hyperbolic systems with stiff relaxation terms remain a challenge for numerical methods
[2, 6, 9]. We are interested in the subset of such systems that have a Chapman-Enskog behavior,
such as models for multiphase flow, rarefied gas dynamics, and radiation hydrodynamics. In
an effort to better understand the behavior of numerical methods for these systems, this study
will focus on a simple model problem [2, 3]:

∂t̃ũ + ∂x̃ṽ = 0, (1a)

∂t̃ṽ + c2
f∂x̃ũ = (ceũ − ṽ)/τ, (1b)

where τ ≥ 0, c2
f > c2

e, and the notation (̃·) is used to emphasize that a variable is dimensional.
We seek numerical methods for (1) that are accurate for all values of τ . Of particular difficulty
is whenever τ is small, where many methods require unreasonable mesh resolution in order to
obtain accurate solutions. A Chapman-Enskog expansion for small τ shows that the long-time,
asymptotic behavior of ũ(x̃, t̃) is described by an advection–diffusion equation:

∂t̃ũ + ce∂x̃ũ − τ(c2
f − c2

e)∂
2
x̃ũ = 0. (2)

The main purpose of this study is to define the manner in which a numerical method for (1)
should share this same asymptotic behavior. The analogy here with gas kinetics is that the
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414 R. B. LOWRIE & J. E. MOREL

system (1) corresponds to a Boltzmann closure, τcf to the mean-free-path, and equation (2)
to the Navier-Stokes equations.

Once the initial condition and suitable boundary conditions have been specified, the solution
of the system (1) is characterized by two independent dimensionless parameters. Following [2],
in this study we use:

r = ce/cf and ε = τcf/L, (3)

where L is the length scale of interest. On the other hand, solutions to (2) are characterized
by a single parameter, the Peclet number, given by

Pe =
ceL

τ(c2
f − c2

e)
=

r

ε(1 − r2)
. (4)

We contend that if conditions are such that (2) holds, then a numerical method for (1) should
only have to resolve the length and time scales corresponding to (2). In other words, if ε � 1
and the solution is near equilibrium, then the accuracy of a method should only depend on the
resolution of scales related to Pe, and not necessarily require resolution of scales corresponding
to either r or ε. We refer to such methods as asymptotic preserving (AP), a term borrowed
from [4].

In terms of a characteristic mesh spacing ∆x̃ and with ε � 1, let the degree of mesh
resolution be measured as

h ≡ ∆x̃/L = O(εp). (5)

Assume that ∆x̃ is no larger than the length scale of interest, so that the minimum p is 0. In
this study, we also restrict p to integer values. At a minimum, there are three regimes that
must be considered when analyzing a method [5]:

1. Unresolved regime: p = 0. By “unresolved” we refer only to the time and length scales
related to τ ; note that ∆x̃/(cfτ) = O(ε−1). Referred to as the “thick regime” in [5].

2. Intermediate regime: p = 1, so that ∆x̃/(cfτ) = O(1).
3. Resolved regime: p ≥ 2. In this case, the mesh resolves the relaxation scales and

∆x̃/(cfτ) = O(εp−1). Referred to as the “thin regime” in [5].

We may now define an AP method more concretely. Consider the following nondimensional-
ization:

x = x̃/L, t = t̃/t̃ref, v = ṽ/ṽref, u = ũ/ũref, (6)

where t̃ref, ṽref, and ũref are constants to be specified later. Expand z ∈ {u, v} as

z(x, t) = z(0)(x, t) + εz(1)(x, t) + O(ε2). (7)

For small ε, we choose (6) such that the leading order solution satisfies

∂tu
(0) + ∂xu(0) − 1

Pe
∂2

xu(0) = 0, (8)

which is a dimensionless version of (2). We define an AP method as a consistent discretization
of (1), such that for all p ≥ 0 and small ε, the discretization for u(0)(x, t) is consistent with
(8).

We stress that our scaling is such that both the advection and diffusion terms appear
in the leading order solution. Similar asymptotic arguments, along with an approach to
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METHODS FOR HYPERBOLIC SYSTEMS WITH STIFF RELAXATION 415

solve efficiently the stiffness arising when cf and ce are disparate, are covered by Naldi and
Pareschi [10]. The ability to predict accurate diffusion, and not just advection, is critical if a
method for (1) is to be accurate for all values of ε and r. On the other hand, we hesitate to
refer to an AP method as “uniformly accurate” [1]. In our opinion, uniform accuracy should
imply accuracy under every conceivable asymptotic behavior, a claim we are not ready to
make.

The AP concept extends to more complicated systems. For gas kinetics, if the Knudsen
number is small such that the Navier-Stokes equations hold, then an AP discretization of
the Boltzmann equation will require resolution of only the scales of interest corresponding
to the Navier-Stokes equations. Specifically, an AP method allows the mean-free-path to be
unresolved, unless that is the length scale of interest (such as in a shock transition layer).

Following [3], a useful analysis technique is to study the asymptotics of the modified (or
‘equivalent’) equation for (1). The asymptotic analysis yields what we refer to as the asymptotic
modified equation, which for our model problem takes the form

∂tu + ∂xu − 1
Pe

∂2
xu = T.E.(u, ε, r, h), (9)

where T.E.(u, ε, r, h) is defined as the asymptotic truncation error. All of the methods in this
study satisfy T.E. = O(h2), but may be non-AP as a result of O(h3) terms. When deriving
(9) for a particular method, we will assume that h is small enough to resolve the variation in
the unknowns and that the solution is regular enough that a Taylor series is valid. However,
we stress that τ may be unresolved by the mesh.

We will not review the modified equation or asymptotic analyses here, as both techniques
are very well known [3, 5, 10]. To keep this report concise, we will also typically omit the steps
in deriving (9) for each method. Boundary and initial conditions should also be considered,
but we leave this analysis for future work.

This study analyzes two semi-discrete methods and one fully-discrete method. In the resolved
regime, standard error analyses apply, and each method is second-order accurate for smooth
data. For the semi-discrete methods, we do not analyze any particular time integrator, and
demonstrate that it is the spatial operator that dominates the asymptotic behavior. We
actually prefer fully-discrete methods, but have concentrated on semi-discrete methods because
it emphasizes that the difficulties arise independent of the time integration scheme [3, 10]. On
the other hand, the spatial operator from a non-AP semi-discrete method, when used with a
clever choice of predictor step(s), may result in an AP method [1]. We leave the investigation
of such methods for future work.

2. ACCURACY OF METHODS FOR ce = 0

Methods may be eliminated from consideration by first studying the ce = 0 case. This special
case simplifies the analysis considerably and elucidates why certain methods fail. In the scaling
(6), we set

t̃ref = L/(εcf ), ṽref = εcf ũref, ũref = O(1). (10)
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416 R. B. LOWRIE & J. E. MOREL

The system (1) then reduces to

∂tu + ∂xv = 0, (11a)

∂tv +
1
ε2

∂xu = − 1
ε2

v. (11b)

If we substitute (7) and collect the O(ε0) terms, then we find

∂tu
(0) − ∂2

xu(0) = 0. (12)

The motivation for the scaling (10) is now apparent, so that the leading-order asymptotic
solution is the heat equation. Naldi and Pareschi [10] refer to this particular scaling as diffusive.
To leading order, the discretization of an AP method for (11) must be consistent with (12).

The Fourier transform solution of (12) shows that data of wave number k is damped as
exp(−dt), where d is the damping rate, given by d = 4π2k2. Let dh be the damping rate for a
particular numerical method. In order to measure the performance of a method, we define

N ≡ mesh cells
wavelength

required for
∣∣∣∣dh

d
− 1

∣∣∣∣ = 0.01. (13)

An AP method for (11) satisfies N = O(ε0) if ε � 1. After all, any discretization of (12) yields
an N that is independent of ε.

2.1. A High-Resolution Godunov Method (HR)

In this section, we give an example of a non-AP method whose asymptotic behavior was first
analyzed in [3]. Consider a semi-discrete, high-resolution Godunov method that uses a central-
difference slope reconstruction [11]. A slope limiter may also be applied, but is not needed for
the purpose of this study. We use the ‘frozen’ Riemann problem (RP) for the flux solver, by
which we mean that we do not account for effects of the source term in (1) when computing
the interface flux.

The HR method for the system (11) has modified equations given by

∂tu + ∂xv =
1
12

h2∂3
xv − 1

8
h3

ε
∂4

xu + O(h4), (14a)

∂tv +
1
ε2

∂xu +
1
ε2

v =
1
12

h2

ε2
∂3

xu − 1
8

h3

ε
∂4

xv + O(h4), (14b)

Consider the unresolved regime, h = O(1). If we substitute (7) into (14a) and compare equal
powers in ε, we obtain

1
8
h3∂4

xu(0) = O(h4), (15a)

∂tu
(0) + ∂xv(0) =

1
12

h2∂3
xv(0) − 1

8
h3∂4

xu(1) + O(h4), (15b)

while (14b) yields

v(0) = −∂xu(0) +
1
12

h2∂3
xu(0) + O(h4). (15c)

We see that HR is non-AP, because (15a) is inconsistent with (12).

Copyright c© 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:413–423
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By substituting (15c) into (15b), it is apparent that the asymptotic behavior is equivalent
to that of

∂tu − ∂2
xu = −

(
1
6
h2 +

1
8

h3

ε

)
∂4

xu + O(ε, h4), (16)

which is this method’s asymptotic modified equation. This same equation also holds in the
intermediate and resolved regimes.

If the mesh is fine enough such that h3 � ε, then second-order accuracy is recovered. To
get an idea of the mesh requirements, the damping rate for (16) is given by

dh = 4π2k2 + 2π4k4h2

(
h

ε
+

4
3

)
. (17)

A good estimate for N may be obtained by ignoring the h2 term (such as in [3]). Using the
fact that h = 1/(kN), we obtain

N =
(

50π2

εk

)1/3

. (18)

Choosing k = 2 and ε = 10−5 requires N = 292 cells/wavelength to resolve the damping rate
to within 1%.

Increasing the spatial order of accuracy may lower the exponent in (18), but we suspect
that the resulting method will be non-AP. Note that we have shown previously that for steady
linear transport, the HR method with any slope reconstruction that is independent of the
source term is non-AP [9]. Another option is to replace the frozen RP by the generalized RP,
which accounts for the source term when computing the flux [2]. However, the generalized RP
reduces to the frozen RP as ∆t̃/τ → 0, and therefore the analysis above holds in this limit.
There are other fixes proposed in [3, 10] which should also be considered, but are beyond the
scope of this study.

2.2. Liotta, Romano, & Russo Method (LRR)

The LRR method is a central scheme (extended Nessyahu & Tadmor) that is derived in [6].
This method uses a uniformly nonoscillatory (UNO) procedure to compute certain derivatives;
the analysis here holds for the UNO method and also any other second-order approximation.
The asymptotic modified equation for the LRR method is given by

∂tu − ∂2
xu =

(
5
24

h2 − 3
128

h3

νε

)
∂4

xu + O(ε, h4), (19)

where ν = cf∆t̃/∆x̃ and ν < 1/2 for stability. Just as with the HR method, the O(h3) term
results in a non-AP method. Note that Reference [6, end of §5.1] drops O(h3) terms in their
analysis. From equation (19), a good estimate for N is

N =
(

75π2

8ενk

)1/3

. (20)

For k = 2, ε = 10−5, and ν = 1/2 we obtain N = 210 cells/wavelength, which is an
improvement over the HR method. However, because of N ’s dependence on ν, in the unresolved
regime the LRR method is less accurate than the HR method when ν � 3/16.
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418 R. B. LOWRIE & J. E. MOREL

2.3. Discontinuous Galerkin (DG)

In this section we analyze a semi-discrete DG method. Within each cell-j, the solution is
approximated using a linear basis:

u(x) = (1 − ξ)u1 + ξu2, ξ = (x − xj−1/2)/h, (21)

where u = (u, v)T and (u1,u2) are computed in each cell. For a linear system, DG in cell-j
may then be written as

∂tu1 +
1
h

[−4fj−1/2 − 2fj+1/2 + 3f(u1) + 3f(u2)
]

= s(u1), (22)

∂tu2 +
1
h

[
4fj+1/2 + 2fj−1/2 − 3f(u1) − 3f(u2)

]
= s(u2). (23)

where s(u) is the source term, f(u) = (v, u)T , and the interface flux fj+1/2 is computed via
the frozen Riemann problem. More information on this particular DG implementation may be
found in [7, 8].

The asymptotic modified equation for DG is given by

∂tu − ∂2
xu = − 1

12
h2∂4

xu + O(ε, h4), (24)

which yields N = 10π/
√

3 ≈ 19 cells/wavelength, independent of ε. In all regimes, this
equation’s leading-order asymptotic behavior is consistent with (12), and therefore, at least to
O(h4) and ce = 0, semi-discrete DG is AP. A disadvantage of DG is that it requires twice as
many unknowns per cell as the other methods in this study.

2.4. Numerical Results for ce = 0

In this section, we demonstrate that the truncation error estimates above are in good agreement
with numerical results. For the semi-discrete methods, we use a predictor–corrector time
integrator. The predictor may be written as

un+1/2 − un

∆t/2
= D(un) + S(un+1/2). (25)

where the operator D corresponds to differential terms and S corresponds to the source term.
For the corrector, we used a lumped–linear DG method for the source term, which requires
solving the following coupled system:

(un+1 + u∗)/2 − un

∆t/2
= D(un+1/2) + S(u∗), (26a)

un+1 − (un+1 + u∗)/2
∆t/2

= D(un+1/2) + S(un+1), (26b)

where u∗ is an intermediate state. This integrator is point-implicit, L-stable, has positive
amplification for all ∆t, and is second-order accurate when ∆t̃/τ is small.

Table (2.4) shows results from the three methods analyzed above. For each method, we
Fourier transformed its asymptotic modified equation in order to analytically estimate the error
with respect to the exact solution of the heat equation. This estimate is denoted as LT.E.

2 (u).
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Also tabulated is L2(u), which is the measured error in u from the numerical simulation with
respect to the exact solution of (1). The values of LT.E.

2 (u) and L2(u) are in good agreement
for all of the methods, which is a good indicator that our analysis and code implementation
are correct. It also shows that the time integrator did not significantly affect the analysis
results for the semi-discrete methods. The order of accuracy is computed from L2(u). DG
shows second-order accuracy, while the other methods don’t show second-order convergence
until the exact solution is over-resolved.

Method Cells/Wavelength LT.E.
2 (u) L2(u) Order

HR(ν = 0.8) 10 4.765e-01 4.765e-01 —
20 4.765e-01 4.765e-01 0.00
40 4.538e-01 4.535e-01 0.07
80 1.509e-01 1.506e-01 1.59

LRR(ν = 0.4) 10 4.765e-01 4.765e-01 —
20 4.765e-01 4.765e-01 0.00
40 3.619e-01 3.615e-01 0.40
80 7.763e-02 7.760e-02 2.22

DG(ν = 0.3) 10 6.342e-03 6.821e-03 —
20 1.557e-03 1.587e-03 2.10
40 3.874e-04 3.887e-04 2.03
80 9.673e-05 9.653e-05 2.01

Table I. Results for ce = 0, ε = 10−5, u(x, 0) = cos(2πx), v(x, 0) = 0, periodic domain, final time is
t = 0.01. L2(u) is the measured error, from which the order of accuracy is computed on successive
meshes. LT.E.

2 (u) is an analytical estimate from the truncation error. Note that the fully-damped
solution u = 0 corresponds to L2(u) = 0.4765.

3. ACCURACY FOR ce �= 0

In this section, we show the sense in which DG retains the AP property for ce �= 0. We use
the scaling

t̃ref = L/ce, ṽref = ceũref, ũref = O(1), (27)

so that the system (1) becomes

∂tu + ∂xv = 0, (28a)

∂tv +
1
r2

∂xu = (u − v)/(rε). (28b)

Past work has typically assumed that r = O(1) in the limit of small ε, so that instead of (8),
results in

∂tu
(0) + ∂xu(0) = 0. (29)

Another perspective is that independent of the choice of scaling,

lim
ε→0

r fixed

Pe(r, ε) = ∞. (30)
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420 R. B. LOWRIE & J. E. MOREL

Therefore, if ε is very small (where numerical methods have difficulty), then holding r fixed tests
only the ability to compute the advection–dominated case. If one is interested in computing
solutions in only the inviscid regime (ε ≡ 0), then fixing r as ε → 0 is valid. However, if
diffusive effects are of interest, or if a method is to be accurate for all ε and r, then a more
appropriate test is to hold Pe fixed as ε → 0. One may then test the diffusion–dominated case
by choosing Pe small. No generality is lost, since one may select a large Pe in order to test the
advection–dominated case.

A fixed Pe implies that r = O(ε), which changes the asymptotic analysis such that the
leading order solution is given by (8). This is another example of a diffusive scaling [10].
Another consequence of the scaling is that one may approximate Pe in (4) as r/ε, but this
approximation is not required. In fact, we prefer the form in (4), because it guarantees that
|r| < 1 (bounded solutions) for any Pe > 0 and ε > 0.

The asymptotic modified equation for the HR method is given by

∂tu + ∂xu − 1
Pe

∂2
xu = −h2

12

(
2
Pe

∂4
x − ∂3

x

)
u − 1

8
h3

r
∂4

xu + O(ε, h4), (31)

while for DG, we obtain

∂tu + ∂xu − 1
Pe

∂2
xu = − 1

36Pe
(3h2∂4

x + 2rh3∂5
x)u − 1

72
rh3∂4

xu + O(ε, h4). (32)

Note that if we account for the scaling differences between (27) and (10), and set ce = 0, then
(31) reduces to (16) and (32) to (24). The relations above hold for all mesh resolution regimes
and for r = O(1) or r = O(ε).

The important difference between HR and DG is contained in the boxed terms of (31) and
(32). When r = O(1), the boxed terms are not a problem for either method and both are
second-order accurate. Keep in mind that

lim
Pe→∞
ε fixed

r(Pe, ε) = ±1,

so that at a given ε and large enough Pe, second-order accuracy will be observed for either
method.

But when r = O(ε), we have that r = εPe + O(ε3), so the boxed term in (31) may be
approximated as

1
8Pe

h3

ε
∂4

xu.

As in the ce = 0 case, it is then obvious that the term above will dominate the diffusive effects
when h3 
 ε. The above relation is the leading order solution when h = O(1), so that HR is
non-AP. A similar result may be derived for the LRR method.

In contrast to HR, the boxed term in (32) behaves as h3ε. Therefore, DG maintains second-
order accuracy for all mesh regimes and is AP. Yet another argument is to compare (32)
with a second-order discretization of (2). A semi-discrete discretization of (2), using a central-
difference slope reconstruction, the upwind flux solver, and a three-point central discretization
for the diffusion term has a modified equation given by

∂tu + ∂xu − 1
Pe

∂2
xu =

1
12

h2∂3
xu − 1

12Pe
h2∂4

xu − 1
8
h3∂4

xu + O(h4). (33)
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The boxed term here is similar to that as in equation (32), but without the factor of r. But
because |r| < 1, DG has similar accuracy.

The analysis above strongly suggests that numerical tests should be run at a fixed Pe. For
small values of Pe, only DG should be second-order accurate, but for a given ε and large enough
Pe, all of the methods in this study should be appear second-order. Figure (1) compares L2-
errors from the DG and LRR methods for three values of the Peclet number. Each plot shows
results that are roughly in the unresolved (ε = 10−5, 10−4, 10−3), intermediate (ε = 0.02),
and resolved (ε = 105) regimes. The problem’s initial condition was u(x, 0) = cos(2πx),
v(x, 0) = u(x, 0), with periodic boundary conditions. The final time was chosen so that the
equilibrium wave propagates 1 wavelength. The DG method shows second order accuracy,
independent of ε. Both methods perform similarly in the intermediate and resolved regimes,
but the LRR method generally does poorly in the unresolved regime. As predicted, if Pe is
large enough, for a given ε (roughly when Peε = O(1)), second-order accuracy is recovered by
LRR in the unresolved regime. The results of the HR method (not shown) are very similar to
the those of LRR.

4. CONCLUSIONS

We have shown that semi-discrete DG is asymptotic preserving (AP) for a model problem.
To discriminate between AP and non-AP methods, we have argued that one should fix the
Peclet number in the limit of vanishing relaxation time. To extend this concept to more general
systems, in the limit of the relevant small parameter, one should fix whatever dimensionless
parameters characterize the near-equilibrium limit. In other work [7, 8], we have obtained
good results for DG for nonlinear systems, such as for the Broadwell model of gas kinetics
and problems in radiation hydrodynamics. The failure of non-AP methods is often the result
of higher-order terms in h. Moreover, the terms that cause failure may be traced back to the
discretization and possibly remedied (e.g., see [3, 10]). This analysis is left for future work.
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Figure 1. DG(ν = 0.3) and LRR(ν = 0.4) errors for various Peclet numbers.
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